Environmental dose rate determination using a passive dosimeter: techniques and workflow for α-Al2 O3 :C chips -Supplementary DataSebastian Kreutzera,∗, Lo¨ıc Martina , Guillaume Gu´erina , Chantal Triboloa , Pierre Selvaa , Norbert Merciera a Institut de Recherche sur les Arch´ eomat´ eriaux, UMR 5060 CNRS - Universit´ e Bordeaux Montaigne, Centre de Recherche en Physique Appliqu´ ee ` a l’Arch´ eologie (CRP2A), Maison de l’Arch´ eologie, 33607 Pessac cedex, France Abstract The following figures and data supplement the main text and the given information therein. Furthermore, the full details on the, exemplarily, carried dosimeter analyses are provided. This includes the used R code and the obtained results. Al2O3:C field dosimeter tube 3 2 5.20 10 M6 10 270 16 1. Additional figures material: AU4G with CC Figure S1: Technical drawing of the field container, gratefully provided by Meca Process (Gradignan, France). All distances are given in mm. Material compositions are, nylon screw: C (64 mass %), H (10 mass %), N (12 mass %), O (14 mass %), density: 1.24 g cm−3 ; rubber O-ring: C5 H8 (100 mass %), density: 1.24 g cm−3 ; dosimeter tube: duralumin Al (92 mass %), Cu (4 mass %), Mg (3 mass %), Mn (1 mass %), density: 2.77 g cm−3 . Not shown: 3 chips Al2 O3 :C, density: 3.79 g cm−3 . ∗ Corresponding author. Email address: sebastian.kreutzer@u-bordeaux-montainge.fr (Sebastian Kreutzer) Supplementary Data - Geochronometria 45, Kreutzer et al., 2018, doi: 10.1515/geochr-2015-0086 March 9, 2018 Table S1: Reference sites cross-check results. For details see main text. Reference site LMP C341 C347 PEP Miallier et al. (2009) D˙ γ cv [µGy a−1 ] [%] 641 ± 18 2.8 849 ± 21 2.5 1, 421 ± 25 1.8 2, 536 ± 110 4.3 This study D˙ γ cv [µGy a−1 ] [%] 699 ± 19 2.7 837 ± 64 7.6 1, 382 ± 109 7.9 2, 204 ± 189 8.6 Variation to reference [%] +9 −1.5 −2.7 −13 Listed are 1σ uncertainties. 114 70 6 46 52 30 0 60 30 0 60 64 M3 33 70 Ø23 0Ø11 0 33 12 Profondeur 0,3 6 51 20 37 37 26 10 00 7 0 M3 5 0 114 35 28 32 18,5 56 64 Ø3,5 0 Ø3 0 42 6 0 Figure S2: Technical drawing of the used bleaching box by Pierre Selva. The (empty) box is made out of aluminium alloy (ADC12) and was purchased from RS Components (http://rs-components.com), RS Stock NO: 5173822. LED used for the bleaching: LuxeonTM -1 Watt Star, type number: LXHL-MRRC (royal-blue, batwing, low dome), λD at 25 ◦ C and 350 mA: 455 nm (FWHM: 20 nm), maximum radiometric power: 100 mW (all technical information as delivered by the supplier). In the bleaching box, the LED is powered by a conventional 9 V block battery. 2 Figure S3: Stimulation spectrum of the green-LEDs as built-in in the operated lexsyg SMART reader. The stimulation spectrum was recorded on an identical stimulation unit installed in a lexsyg research at the Justus-Liebig-University Giessen, Germany in 2014. For recording the spectrum the in-built spectrometer of the system was used, the spectrometer system was energy calibrated using the spectrum of a conventional neon ceiling lamp. 3 green LED array 0.2 0.4 0.6 Transmission [a.u.] 0.8 1.0 Filter Combination & Stimulation 0.0 BG3 (3 mm) 414/46 BL 200 400 600 800 1000 Wavelength [nm] Figure S4: Filter transmission spectrum and stimulation wavelength as used for the experiments in the lexsyg SMART. The blue area shows the net transmission window; the LED emission is indicated by a green rectangle. Natural GLS TL Cleanout REG. GLS TL Cleanout GLS Background 44 46 48 50 Stimulation time [s] 52 150 250 Temperature [°C] 42 44 46 48 50 Stimulation time [s] 52 800 750 700 550 0 50 650 GSL signal [cts/0.1 s] 20 15 10 TL (UVVIS) [a.u.] 5 550 0 550 42 600 25 800 750 700 650 GSL signal [cts/0.1 s] 600 25 20 15 5 10 TL (UVVIS) [a.u.] 800 750 700 650 600 GSL signal [cts/0.1 s] 850 816 µGy 50 150 250 Temperature [°C] 42 44 46 48 50 52 Stimulation time [s] Figure S5: OSL and TL curves obtained from measuring 15 sample carriers as used for the experiments. The measurement sequence is identical to the one proposed in the main text. The shown curves follow the sequence structure. Before the measurement, the sample carriers were heated to 450 ◦ C in N2 within the reader. For all measured cups, no dose induced luminescence signal was observed. Even for different sample carriers, the signal is highly reproducible. The experiment further proves that the initial GSL signal decay is not related to the α-Al2 O3 :C chips as also shown with the background measurements in the main text. 4 TL Cleanout 1.0 44 46 48 50 0.6 0.8 42 0.2 0.4 TL (UVVIS) [a.u.] 0.98 0.96 Direct 0 µGy 408 µGy 816 µGy 1,224 µGy 0.94 OSL (UVVIS) [a.u.] 1.00 Natural GLS 52 50 Stimulation time [s] 100 150 200 250 300 Stimulation time [s] Figure S6: Shown are the results of the bleaching box performance test on 15 α-Al2 O3 :C chips. All chips were previously reset in an external furnace in air (10 min, 950 ◦ C) and then split into five subsets ´ a three aliquots. For all subgroups, the GLS (left plot) and TL curve (right plot) were measured (step 1 to 2 from the sequence proposed in the main text). The curves are normalised to the highest value of each curve. The pre-treatment differ for each subset. The subset (1) received no further treatment. The subset (2–5) received doses between 0 µGy (subset 2) and 1,224 µGy (subset 5) followed by a signal resetting in the bleaching box for 2 min. In the graphic, subsets are colour coded, showing the mean of each subset. Except for the GSL curves following a dose of 408 µGy (subset 3), the curves show no significant signal decay. However, the signal decay of subset 3 is even higher than the signal decay after 1,224 µGy (subset 5). The induced apparent dose results from technical difficulties during the handling of the chips, which stayed longer in the reader than the other chips. In summary, the results show that the (1) chips are susceptible (see also the subsequent TL curves, which show a small signal) and (2) the dose obtained during the transport of the dosimeter can be sufficiently reset in the bleaching box within 2 min. Please note that even the lowest dose applied here (408 µGy) is an order of magnitude higher than the typically expected maximum travel dose (e.g., 11.5 h flight from Paris to Tokyo: ca. 41 µGy, cf. Bottollier-Depois et al. 2003). Figure S7: GSL and TL curves from the measurement obtained to correct the irradiation time for the additional dose uptake during the sample transport. Each plot shows the results for five repetitions of one aliquot. (A) Initial GSL curves, normalised to the highest count value each, (B) TL clean out curves (step 5, Table 3) and (C) background curves. 5 Correction Dose Distribution n = 12 | mean = 2.59 | abs. sd = 0.02 3 ● ● 0 ● ●● ● ●● ● ● ● ● 2.6 2.4 2.2 Correction dose [s] Standardised estimate 2.8 2 Relative standard error (%) 5 2.5 1.7 0 20 40 Precision 60 1.2 80 0 18.452 Density (bw 0.004) Figure S8: Abanico plot Dietze et al. (2016) showing the distribution of determined irradiation time correction values expressed in s. The summary quotes the error weighted mean and the absolute standard deviation. 6 Source Calibration Results n = 5 | mean = 204.12 | abs. sd = 8.18 | rel. sd = 4 % 230 210 ● 2 0 −2 ● ● 200 Dose [µGy/s] Standardised estimate 220 ● ● 190 180 0 Relative standard error (%) 2 1 0.7 0.5 50 200 100 150 Precision 0 0.045 Density (bw 0.024) Figure S9: Calibration results for the β-source in the used lexsyg SMART reader. Shown are dose rate values in µGy/s. Please note that the mean and the standard deviation differs slightly from the values reported in the main text. The values in the figures were obtained after the log-transformation, i.e. the mean here is not the arithmetic mean, but the geometric mean exp(mean(log(x))). Furthermore, the standard error in the main text includes an additional error term from the estimation of the dose rate of the brick block used for the irradiation itself. 7 2. Application - Sierra de Atapuerca (Spain), site: Gran Dolina - full data analysis The following pages are an example of analysing measurements carried out on α-Al2 O3 :C chips. For further information, not give below, please see the documentation of the R ‘Luminescence’ package. 8 Setup The following page were produced using ‘rmarkdown’ and the following setup: ## R version: R Under development (unstable) (2018-01-20 r74146) ## 'Luminescence' package version: 0.8.0 Import data ##load R package 'Luminescence' library(Luminescence) ##load pre-calculated values for irradiation cross-talk and ##irradiation time correction load(Al2O3_CalculationData_path) ##import data temp <- read_XSYG2R(file = data_path, fastForward = TRUE, verbose = FALSE ) Please note that the values for the irradiation cross-talk, the irradiation time correction and the source calibration have been already obtained in previous experiments. Thus, the data processing uses the following datasets: 1. results_ITC (RLum.Results-object with the data for the irradiation time correction) 2. results_CT (RLum.Results-object with the radiation cross-talk data) 3. sourceDR_FINAL (the source calibration values) Analyse Analyse measurement data results <- analyse_Al2O3C_Measurement( object = temp, irradiation_time_correction = results_ITC, cross_talk_correction = results_CT, travel_dosimeter = 1, verbose = FALSE, plot = TRUE ) 9 ALQ POS: 1 | OSL ALQ POS: 1 | TL #1 #2 NAT #4 REG 0 200 400 600 800 TL (UVVIS) [a.u.] 10000 15000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 0.07 ± 0 44 46 48 50 52 50 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 2 | OSL ALQ POS: 2 | TL 2500 DE: 4.9 ± 0.02 300 #2 #2 NAT #4 REG 1500 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 10000 OSL (UVVIS) [a.u.] 100 500 42 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 3 | OSL ALQ POS: 3 | TL 300 #3 2500 1500 #2 NAT #4 REG 0 500 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.83 ± 0.01 44 46 48 50 52 50 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 4 | OSL ALQ POS: 4 | TL 2500 DE: 2.29 ± 0.01 300 #4 #2 NAT #4 REG 1500 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 0 10000 OSL (UVVIS) [a.u.] 100 500 42 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 10 250 300 ALQ POS: 5 | OSL ALQ POS: 5 | TL #5 1500 0 44 46 48 50 52 50 100 150 200 250 Temperature [°C] ALQ POS: 6 | OSL ALQ POS: 6 | TL DE: 2.7 ± 0.01 TL (UVVIS) [a.u.] #6 #2 NAT #4 REG 0 10000 30000 #1 NAT #3 REG #5 BG 1000 1500 2000 Simulation [s] 300 500 42 OSL (UVVIS) [a.u.] 500 TL (UVVIS) [a.u.] #2 NAT #4 REG 15000 30000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 1.85 ± 0.01 44 48 50 52 50 150 200 250 ALQ POS: 7 | TL 300 #7 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 15000 25000 #1 NAT #3 REG #5 BG 1000 1500 2000 ALQ POS: 7 | OSL DE: 2.76 ± 0.01 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 8 | OSL ALQ POS: 8 | TL 30000 42 300 #8 DE: 2.33 ± 0.01 1000 1500 #2 NAT #4 REG 0 500 20000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] 100 Temperature [°C] 5000 OSL (UVVIS) [a.u.] 46 Simulation [s] 35000 42 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 11 250 300 ALQ POS: 9 | OSL ALQ POS: 9 | TL 2500 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 4.61 ± 0.02 #9 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 10 | OSL ALQ POS: 10 | TL 300 #10 46 48 50 52 50 100 150 200 250 Temperature [°C] ALQ POS: 11 | OSL ALQ POS: 11 | TL 2500 Simulation [s] #11 #2 NAT #4 REG 0 10000 25000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 300 1500 40000 DE: 3.22 ± 0.02 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 12 | OSL ALQ POS: 12 | TL 50000 42 300 #12 3000 DE: 3.22 ± 0.02 2000 30000 0 10000 #2 NAT #4 REG 1000 #1 NAT #3 REG #5 BG TL (UVVIS) [a.u.] OSL (UVVIS) [a.u.] 1500 0 44 500 42 OSL (UVVIS) [a.u.] 500 TL (UVVIS) [a.u.] #2 NAT #4 REG 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 4.06 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 12 250 300 ALQ POS: 13 | OSL ALQ POS: 13 | TL 2500 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 3.46 ± 0.02 #13 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 14 | OSL ALQ POS: 14 | TL 300 #14 2000 0 44 46 48 50 52 50 100 150 200 250 Temperature [°C] ALQ POS: 15 | OSL ALQ POS: 15 | TL 2500 Simulation [s] #2 NAT #4 REG 0 10000 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG #15 1500 DE: 4.08 ± 0.02 300 500 42 OSL (UVVIS) [a.u.] #2 NAT #4 REG 500 1000 20000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.8 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 16 | OSL ALQ POS: 16 | TL 300 #16 2000 TL (UVVIS) [a.u.] 25000 #2 NAT #4 REG 0 500 1000 40000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 2.49 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 13 250 300 ALQ POS: 17 | TL #17 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.26 ± 0.01 1000 1500 2000 ALQ POS: 17 | OSL 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 18 | OSL ALQ POS: 18 | TL 300 #18 1500 0 500 TL (UVVIS) [a.u.] #2 NAT #4 REG 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 2.78 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 19 | OSL ALQ POS: 19 | TL 300 #19 2000 TL (UVVIS) [a.u.] 20000 0 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 20 | OSL ALQ POS: 20 | TL 300 #20 3000 #2 NAT #4 REG 2000 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 1000 50000 DE: 3.4 ± 0.02 10000 OSL (UVVIS) [a.u.] #2 NAT #4 REG 500 1000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.63 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 14 250 300 ALQ POS: 21 | OSL ALQ POS: 21 | TL #21 3000 2000 TL (UVVIS) [a.u.] 30000 #2 NAT #4 REG 0 1000 50000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 3.84 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 1 | OSL ALQ POS: 1 | TL 300 #22 1500 20000 TL (UVVIS) [a.u.] #2 NAT #4 REG 0 500 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 0.05 ± 0 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 2 | OSL ALQ POS: 2 | TL 300 #23 2000 3000 #2 NAT #4 REG 0 1000 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.11 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 3 | OSL ALQ POS: 3 | TL 300 #24 600 1000 #2 NAT #4 REG 0 200 15000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 2.63 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 15 250 300 ALQ POS: 4 | OSL ALQ POS: 4 | TL 1000 600 #2 NAT #4 REG 0 200 TL (UVVIS) [a.u.] 10000 15000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 2.37 ± 0.01 #25 44 46 48 50 52 50 200 250 Temperature [°C] ALQ POS: 5 | OSL ALQ POS: 5 | TL 2500 300 #26 #2 NAT #4 REG 1500 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 0 5000 15000 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 6 | OSL ALQ POS: 6 | TL 300 #27 2000 #1 NAT #3 REG #5 BG 25000 15000 0 5000 #2 NAT #4 REG 500 1000 35000 DE: 2.77 ± 0.01 TL (UVVIS) [a.u.] OSL (UVVIS) [a.u.] 150 Simulation [s] DE: 1.78 ± 0.01 OSL (UVVIS) [a.u.] 100 500 42 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 7 | OSL ALQ POS: 7 | TL 300 #28 3000 2000 TL (UVVIS) [a.u.] 30000 #2 NAT #4 REG 0 1000 50000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 2.54 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 16 250 300 ALQ POS: 8 | TL #29 DE: 2.56 ± 0.01 42 44 46 48 50 1500 2500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 15000 25000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] 35000 ALQ POS: 8 | OSL 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 9 | OSL ALQ POS: 9 | TL 300 #30 3000 2000 TL (UVVIS) [a.u.] 30000 #2 NAT #4 REG 0 1000 50000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.01 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 10 | OSL ALQ POS: 10 | TL 300 #31 2500 1500 0 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 11 | OSL ALQ POS: 11 | TL 40000 42 300 #32 DE: 3.35 ± 0.02 1000 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] #2 NAT #4 REG 500 TL (UVVIS) [a.u.] 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.03 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 17 250 300 ALQ POS: 12 | OSL ALQ POS: 12 | TL #33 2500 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 3.28 ± 0.02 42 44 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 13 | OSL ALQ POS: 13 | TL 300 #34 42 44 46 48 50 2500 #2 NAT #4 REG 1500 25000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 500 40000 DE: 3.22 ± 0.02 10000 OSL (UVVIS) [a.u.] 46 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 14 | OSL ALQ POS: 14 | TL 300 #35 2500 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 15000 25000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 4.64 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 15 | OSL ALQ POS: 15 | TL 300 #36 #2 NAT #4 REG 0 200 400 600 800 15000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 3.66 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 18 250 300 ALQ POS: 16 | OSL ALQ POS: 16 | TL 2500 1500 #2 NAT #4 REG 0 500 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 2.23 ± 0.01 #37 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 17 | OSL ALQ POS: 17 | TL 300 #38 0 500 30000 1500 #2 NAT #4 REG TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.31 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 18 | OSL ALQ POS: 18 | TL 300 #39 3000 2000 #2 NAT #4 REG 0 1000 TL (UVVIS) [a.u.] 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 2.76 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 19 | OSL ALQ POS: 19 | TL 300 #40 3000 2000 #2 NAT #4 REG 0 1000 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.22 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 19 250 300 ALQ POS: 20 | OSL ALQ POS: 20 | TL 3000 2000 #2 NAT #4 REG 0 1000 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 3.21 ± 0.02 #41 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 21 | OSL ALQ POS: 21 | TL 300 #42 1500 TL (UVVIS) [a.u.] #2 NAT #4 REG 0 500 15000 25000 35000 #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 4.14 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 1 | OSL ALQ POS: 1 | TL 300 #43 1000 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 0.05 ± 0 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 2 | OSL ALQ POS: 2 | TL 300 #44 800 600 400 TL (UVVIS) [a.u.] #2 NAT #4 REG 0 200 20000 #1 NAT #3 REG #5 BG 5000 10000 OSL (UVVIS) [a.u.] DE: 4.29 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 20 250 300 ALQ POS: 3 | OSL #45 2500 #2 NAT #4 REG 1500 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 500 50000 DE: 2.23 ± 0.01 10000 OSL (UVVIS) [a.u.] ALQ POS: 3 | TL 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 4 | OSL ALQ POS: 4 | TL 300 #46 0 500 1500 #2 NAT #4 REG TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 2.38 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 5 | OSL ALQ POS: 5 | TL 300 #47 600 400 TL (UVVIS) [a.u.] 6000 0 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 6 | OSL ALQ POS: 6 | TL 300 #48 25000 15000 1500 #2 NAT #4 REG TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 500 35000 DE: 3.19 ± 0.02 5000 OSL (UVVIS) [a.u.] #2 NAT #4 REG 200 10000 14000 #1 NAT #3 REG #5 BG 2000 OSL (UVVIS) [a.u.] DE: 1.82 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 21 250 300 ALQ POS: 7 | OSL ALQ POS: 7 | TL 2500 1500 0 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 8 | OSL ALQ POS: 8 | TL 2500 DE: 2.46 ± 0.01 #50 #2 NAT #4 REG 1500 TL (UVVIS) [a.u.] 0 15000 25000 35000 #1 NAT #3 REG #5 BG 300 500 42 OSL (UVVIS) [a.u.] #2 NAT #4 REG 500 TL (UVVIS) [a.u.] 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 2.86 ± 0.01 #49 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 9 | OSL ALQ POS: 9 | TL 300 #51 1500 0 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 10 | OSL ALQ POS: 10 | TL 2000 35000 DE: 4.11 ± 0.02 #52 #2 NAT #4 REG 0 15000 25000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 300 500 1000 42 OSL (UVVIS) [a.u.] 500 TL (UVVIS) [a.u.] #2 NAT #4 REG 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.68 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 22 250 300 ALQ POS: 11 | OSL ALQ POS: 11 | TL #53 1500 500 0 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 12 | OSL ALQ POS: 12 | TL 300 #54 1500 #2 NAT #4 REG 1000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 500 15000 25000 35000 DE: 3.35 ± 0.02 5000 OSL (UVVIS) [a.u.] #2 NAT #4 REG TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 5000 15000 OSL (UVVIS) [a.u.] DE: 3.35 ± 0.02 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 13 | OSL ALQ POS: 13 | TL 300 #55 44 46 48 50 2500 1500 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 14 | OSL ALQ POS: 14 | TL 300 #56 1000 #2 NAT #4 REG 600 TL (UVVIS) [a.u.] 6000 10000 #1 NAT #3 REG #5 BG 0 200 14000 DE: 4.38 ± 0.02 2000 OSL (UVVIS) [a.u.] TL (UVVIS) [a.u.] 30000 42 #2 NAT #4 REG 0 500 50000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 2.86 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 23 250 300 ALQ POS: 15 | OSL ALQ POS: 15 | TL 2000 1000 #2 NAT #4 REG 0 500 30000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 3.46 ± 0.02 #57 44 46 48 50 52 50 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 16 | OSL ALQ POS: 16 | TL 2000 DE: 2.18 ± 0.01 300 #58 #2 NAT #4 REG 1000 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 0 10000 OSL (UVVIS) [a.u.] 100 500 42 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 17 | OSL ALQ POS: 17 | TL 300 #59 #2 NAT #4 REG 0 200 400 600 800 15000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 5000 OSL (UVVIS) [a.u.] DE: 1.26 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 18 | OSL ALQ POS: 18 | TL 300 #60 2500 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 25000 35000 #1 NAT #3 REG #5 BG 15000 OSL (UVVIS) [a.u.] DE: 2.72 ± 0.01 42 44 46 48 50 52 50 Simulation [s] 100 150 200 Temperature [°C] 24 250 300 ALQ POS: 19 | OSL ALQ POS: 19 | TL #61 44 46 48 50 2500 1500 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 20 | OSL ALQ POS: 20 | TL 300 #62 1500 #2 NAT #4 REG 1000 TL (UVVIS) [a.u.] #1 NAT #3 REG #5 BG 0 500 15000 25000 35000 DE: 3.27 ± 0.02 5000 OSL (UVVIS) [a.u.] 42 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 20000 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 1.34 ± 0.01 42 44 46 48 50 52 50 100 150 200 250 Simulation [s] Temperature [°C] ALQ POS: 21 | OSL ALQ POS: 21 | TL 300 #63 1000 1500 #2 NAT #4 REG 0 500 TL (UVVIS) [a.u.] 30000 #1 NAT #3 REG #5 BG 10000 OSL (UVVIS) [a.u.] DE: 4.11 ± 0.02 42 44 46 48 50 52 50 Simulation [s] 100 150 200 250 300 Temperature [°C] Summarise results and obtain final dose-rate Extract data The function analyse_Al2O3C_Measurement() returns an RLum.Results-object including the travel dosimeter corrected values (results$data_TDcorrected) for further processing, here in R, however, other programs like MS ExcelT M can be used as well. At this point the measurement data might require a rejecting of individual aliquots; for this example nothing is rejecting. ##load package plyr library(plyr) 25 ##group data according to their position results_grouped <- plyr::dlply(results$data_TDcorrected, "POSITION", identity) ##calculate error weighted mean for each position, results_summarised <- vapply(1:length(results_grouped), function(x){ unlist(calc_Statistics( data = results_grouped[[x]][,c("DE","DE_ERROR")], n.MCM = 1000)[["MCM"]][c("mean", "sd.abs")]) }, FUN.VALUE = numeric(length = 2)) Convert to µGy The values needed to be converted to µGy using the source calibration value, here: sourceDR_FINAL ## DR DR_ERROR UNIT ## 1 204.2475 8.951548 µGy/s The conversion is a simple multiplication. Please note that the source calibration error, as a systematic error, needs to be considered in the final age calculation and is therefore not further taken into account here. results_final <- results_summarised * sourceDR_FINAL[,1] Correct for the anual fraction The last step accounts for the fact that the dosimeter was stored for a fraction of a year, here, 258 days, but dose rates are usually given per year (or ka). ##final results results_final <- results_final * 365.25 / 258 The final results for the obtained true dose recorded by the dosimeter are listed in the following table (expressed as dose rate): df_final <- data.frame( POS = 2:21, DR = t(results_final)[,1], DR_ERROR = t(results_final)[,2], cv = t(results_final)[,2]/t(results_final)[,1] * 100) Table 1: Final γ-dose rate values in µGy/a; cv is given in %. POS DR DR_ERROR cv 2 3 4 5 6 7 8 9 10 1263.6803 626.9395 660.7887 507.3163 817.3762 769.3464 690.7183 1265.2729 1157.9356 97.423000 94.596618 13.179756 9.181574 61.786298 39.655032 26.869844 87.093650 12.089440 7.709466 15.088637 1.994549 1.809832 7.559102 5.154380 3.890131 6.883388 1.044051 26 POS DR DR_ERROR cv 11 12 13 14 15 16 17 18 19 20 21 938.9186 932.5263 902.3959 1314.6045 1060.9771 647.9879 351.5619 779.4593 386.8038 934.7718 1147.9600 18.996965 15.796971 72.205829 49.779468 74.639894 38.950597 7.557073 8.628355 50.308973 23.884300 39.372109 2.023281 1.693997 8.001569 3.786650 7.035015 6.011007 2.149571 1.106967 13.006327 2.555094 3.429746 Further statistical measures: ##range DR range(df_final$DR) ## [1] 351.5619 1314.6045 ##mean cv mean(df_final$cv) ## [1] 5.096638 ##range cv range(df_final$cv) ## [1] 1.044051 15.088637 ##number of aliquots with cv >5% table(df_final$cv > 5) ## ## FALSE ## 11 TRUE 9 Please note that for obtaining the environmental dose rate (cosmic + γ-dose rate) every position needs to be corrected in three further steps: 1. Subtraction of the individual cosmic-dose rate per sample (e.g., by using the function calc_CosmicDoseRate(), 2. Correction of the remaining dose value for the container, in our case by multiplying by a factor of 1.065 (i.e. correct for the attenuation of the field container), 3. Adding again the individual cosmic-dose rate value to each sample. Post-processing The following post-processing was used to create figures shown in the main text. ## full data set merged df <- merge(x = results$data, y = results$test_parameters, by = "UID") ##create matrix for positions (one column for each position) results_grouped <- plyr::dlply(df, "POSITION", identity) 27 ##create simple matrix m <- do.call(cbind, lapply(results_grouped, function(x){x$DE})) # Plotting ------------------------------------par(mfrow = c(1,2), cex = 1.2) ##plot1 plot( matrixStats::colSds(m)/colMeans(m) * 100, col = ifelse(unlist(lapply(results_grouped, function(x){any(x$STATUS)})), "red", "grey"), xlab = "#ALQ", ylab = "Coefficient of variation [%]", main = "Coefficient of Variation", bg = "grey", pch = 21 ) abline(h = 5, col = "red", lty = 2) ##plot2 plot(x = df$VALUE, y = df$DE, xlab = "TL peak shift [K]", ylab = expression(paste(D[e], " [s]")), main = "TL Peak Shift vs. Equivalent Dose" ) mtext(side = 3, text = paste("r = ", round(cor(x = df$VALUE, df$DE),1))) Coefficient of Variation TL Peak Shift vs. Equivalent Dose 4 2 De [s] 3 10 0 1 5 Coefficient of variation [%] 15 5 r = −0.1 5 10 15 20 0 #ALQ 10 20 30 TL peak shift [K] 28 40 References Bottollier-Depois, J.F., Chau, Q., Bouisset, P., Kerlau, G., Plawinski, L., Lebaron-Jacobs, L., 2003. Assessing exposure to cosmic radiation on board aircraft. Advances in Space Research 32, 59–66. Dietze, M., Kreutzer, S., Burow, C., Fuchs, M.C., Fischer, M., Schmidt, C., 2016. The abanico plot: visualising chronometric data with individual standard errors. Quaternary Geochronology 31, 12–18. Miallier, D., Gu´ erin, G., Mercier, N., Pilleyre, T., Sanzelle, S., 2009. The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes. Ancient TL 27, 37–44. 29